论文标题
常规图及其应用的离散扩散型方程
Discrete diffusion-type equation on regular graphs and its applications
论文作者
论文摘要
我们为基本解决方案提供了一个明确的公式$ k_ {t_ {q+1}}(x,x,x_ {0}; t)$ to $(q+1)$ - 常规树$ t_ {q+1} $的离散时间扩散方程。然后,我们使用该公式将基本解决方案的显式表达式推导出$ k_ {x}(x,x,x_ {0}; t)$ to任何$(q+1)$ - 常规图$ x $的离散时间扩散方程。进一步,我们开发了三个应用程序。第一个是得出将$ x $上的频谱数据与其拓扑数据相关的一般跟踪公式。尽管我们强调$ x $有限的情况下的结果,但是当$ x $具有无限数量的顶点时,我们的方法也适用。作为第二个应用程序,我们获得了在任何$(q+1)$ - 常规图上均匀随机步行的返回时间概率分布的封闭式表达式。表达式是通过将$ k_ {x}(x,x_ {0}; t)$与$(q+1)$ - 常规图上的统一随机步行相关联获得的。然后,我们证明,如果$ \ {x_ {h} \} $是$(q+1)$的序列 - 常规图 - 其顶点数量为无穷大且满足某个自然几何条件的数量,则返回时间概率分布的限制,则$ \ \ \ \ \ {x_ {h} \} $均等$ the $ 1 $ n $ t n $ {作为第三个应用程序,我们得出了公式,该公式在其邻接矩阵的光谱矩上表达了有限图$ x $上没有尾巴的不同闭合不可约的步行的数量。
We derive an explicit formula for the fundamental solution $K_{T_{q+1}}(x,x_{0};t)$ to the discrete-time diffusion equation on the $(q+1)$-regular tree $T_{q+1}$ in terms of the discrete $I$-Bessel function. We then use the formula to derive an explicit expression for the fundamental solution $K_{X}(x,x_{0};t)$ to the discrete-time diffusion equation on any $(q+1)$-regular graph $X$. Going further, we develop three applications. The first one is to derive a general trace formula that relates the spectral data on $X$ to its topological data. Though we emphasize the results in the case when $X$ is finite, our method also applies when $X$ has a countably infinite number of vertices. As a second application, we obtain a closed-form expression for the return time probability distribution of the uniform random walk on any $(q+1)$-regular graph. The expression is obtained by relating $K_{X}(x,x_{0};t)$ to the uniform random walk on a $(q+1)$-regular graph. We then show that if $\{X_{h}\}$ is a sequence of $(q+1)$-regular graphs whose number of vertices goes to infinity and which satisfies a certain natural geometric condition, then the limit of the return time probability distributions from $\{X_{h}\}$ is equal to the return time probability distribution on the tree $T_{q+1}$. As a third application, we derive formulas which express the number of distinct closed irreducible walks without tails on a finite graph $X$ in terms of moments of the spectrum of its adjacency matrix.