论文标题

一个编码最佳Clifford电路合成的SAT

A SAT Encoding for Optimal Clifford Circuit Synthesis

论文作者

Schneider, Sarah, Burgholzer, Lukas, Wille, Robert

论文摘要

在量子计算机上执行量子算法需要汇编,以符合符合设备施加的所有限制的表示形式。由于设备有限的相干时间和门的保真度,因此必须尽可能优化汇编过程。为此,必须使用设备的门库合成算法的描述。在本文中,我们考虑了Clifford电路的最佳合成 - 具有各种应用的量子电路的重要子类。这样的技术对于建立(启发式)合成方法并测量其性能至关重要。由于较大的搜索空间,现有的最佳技术最多限于六个QUAT。这项工作的贡献是双重的:首先,我们提出了一种基于将任务编码为满意度(SAT)问题编码的Clifford电路的最佳合成方法,并使用SAT求解器与二进制搜索方案结合使用SAT求解器来解决它。结果的工具被证明可以合成最佳$ 26 $ QUBITS的最佳电路 - 是当前最新状态的四倍以上。其次,我们通过实验表明,最先进的启发式方法引入的间接费用超过了$ 27 \%$的下限。所得工具可在https://github.com/cda-tum/qmap上公开获得。

Executing quantum algorithms on a quantum computer requires compilation to representations that conform to all restrictions imposed by the device. Due to device's limited coherence times and gate fidelities, the compilation process has to be optimized as much as possible. To this end, an algorithm's description first has to be synthesized using the device's gate library. In this paper, we consider the optimal synthesis of Clifford circuits -- an important subclass of quantum circuits, with various applications. Such techniques are essential to establish lower bounds for (heuristic) synthesis methods and gauging their performance. Due to the huge search space, existing optimal techniques are limited to a maximum of six qubits. The contribution of this work is twofold: First, we propose an optimal synthesis method for Clifford circuits based on encoding the task as a satisfiability (SAT) problem and solving it using a SAT solver in conjunction with a binary search scheme. The resulting tool is demonstrated to synthesize optimal circuits for up to $26$ qubits -- more than four times as many as the current state of the art. Second, we experimentally show that the overhead introduced by state-of-the-art heuristics exceeds the lower bound by $27\%$ on average. The resulting tool is publicly available at https://github.com/cda-tum/qmap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源