论文标题
部分可观测时空混沌系统的无模型预测
Learning crop type mapping from regional label proportions in large-scale SAR and optical imagery
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The application of deep learning algorithms to Earth observation (EO) in recent years has enabled substantial progress in fields that rely on remotely sensed data. However, given the data scale in EO, creating large datasets with pixel-level annotations by experts is expensive and highly time-consuming. In this context, priors are seen as an attractive way to alleviate the burden of manual labeling when training deep learning methods for EO. For some applications, those priors are readily available. Motivated by the great success of contrastive-learning methods for self-supervised feature representation learning in many computer-vision tasks, this study proposes an online deep clustering method using crop label proportions as priors to learn a sample-level classifier based on government crop-proportion data for a whole agricultural region. We evaluate the method using two large datasets from two different agricultural regions in Brazil. Extensive experiments demonstrate that the method is robust to different data types (synthetic-aperture radar and optical images), reporting higher accuracy values considering the major crop types in the target regions. Thus, it can alleviate the burden of large-scale image annotation in EO applications.