论文标题
部分可观测时空混沌系统的无模型预测
Strongly invertible knots, equivariant slice genera, and an equivariant algebraic concordance group
论文作者
论文摘要
我们使用Blanchfield形式获得强烈可逆结的模棱两可的切片属上的下限。对于我们的主要应用程序,让$ k $是一个强烈可逆的片属,具有非平凡的亚历山大多项式。我们表明,等效的连接sum $ \#^n k $的层状属至少为$ n/4 $。我们还制定了一个模棱两可的代数协和群,并表明,与经典代数共和国组的健忘地图的内核是无限的等级。
We use the Blanchfield form to obtain a lower bound on the equivariant slice genus of a strongly invertible knot. For our main application, let $K$ be a genus one strongly invertible slice knot with nontrivial Alexander polynomial. We show that the equivariant slice genus of an equivariant connected sum $\#^n K$ is at least $n/4$. We also formulate an equivariant algebraic concordance group, and show that the kernel of the forgetful map to the classical algebraic concordance group is infinite rank.