论文标题

深度符号学习:从感知中发现符号和规则

Deep Symbolic Learning: Discovering Symbols and Rules from Perceptions

论文作者

Daniele, Alessandro, Campari, Tommaso, Malhotra, Sagar, Serafini, Luciano

论文摘要

神经符号(NESY)集成将符号推理与神经网络(NNS)结合在一起,用于需要感知和推理的任务。大多数NESY系统都依赖于对逻辑知识的持续放松,并且在模型管道中没有做出离散决策。此外,这些方法假定给出了符号规则。在本文中,我们提出了深入的符号学习(DSL),即学习NESY函数的NESY系统,即,(集合)感知函数的组成,将连续数据映射到离散符号,以及一组符号上的符号函数。 DSL同时了解仅在其组成(NESY功能)训练的同时,同时学习了感知和符号功能。 DSL的主要新颖性是它可以创建内部(可解释的)符号表示形式,并将其映射到可区分的NN学习管道中的感知输入。自动选择创建的符号以生成最能解释数据的符号函数。我们提供实验分析,以证实DSL在同时学习感知和符号功能中的功效。

Neuro-Symbolic (NeSy) integration combines symbolic reasoning with Neural Networks (NNs) for tasks requiring perception and reasoning. Most NeSy systems rely on continuous relaxation of logical knowledge, and no discrete decisions are made within the model pipeline. Furthermore, these methods assume that the symbolic rules are given. In this paper, we propose Deep Symbolic Learning (DSL), a NeSy system that learns NeSy-functions, i.e., the composition of a (set of) perception functions which map continuous data to discrete symbols, and a symbolic function over the set of symbols. DSL learns simultaneously the perception and symbolic functions while being trained only on their composition (NeSy-function). The key novelty of DSL is that it can create internal (interpretable) symbolic representations and map them to perception inputs within a differentiable NN learning pipeline. The created symbols are automatically selected to generate symbolic functions that best explain the data. We provide experimental analysis to substantiate the efficacy of DSL in simultaneously learning perception and symbolic functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源