论文标题
灌注:使用辐射场的感知
PeRFception: Perception using Radiance Fields
论文作者
论文摘要
隐式3D表示的最新进展,即神经辐射场(NERFS),以可区分的方式使准确且具有逼真的3D重建成为可能。这种新的表示可以有效地传达以一种紧凑的格式传达数百个高分辨率图像的信息,并允许对新观点的逼真综合。在这项工作中,使用NERF的变体称为plenoxels,我们为感知任务创建了第一个大规模隐式表示数据集,称为Fustection,该数据包含两个部分,这些部分既包含以对象为中心和场景为中心的扫描,以分类和分段。它显示了原始数据集的明显内存压缩率(96.4 \%),同时以统一形式包含2D和3D信息。我们构建了直接作为输入这种隐式格式的分类和分割模型,还提出了一种新颖的增强技术,以避免在图像的背景上过度拟合。代码和数据可在https://postech-cvlab.github.io/perfception中公开获得。
The recent progress in implicit 3D representation, i.e., Neural Radiance Fields (NeRFs), has made accurate and photorealistic 3D reconstruction possible in a differentiable manner. This new representation can effectively convey the information of hundreds of high-resolution images in one compact format and allows photorealistic synthesis of novel views. In this work, using the variant of NeRF called Plenoxels, we create the first large-scale implicit representation datasets for perception tasks, called the PeRFception, which consists of two parts that incorporate both object-centric and scene-centric scans for classification and segmentation. It shows a significant memory compression rate (96.4\%) from the original dataset, while containing both 2D and 3D information in a unified form. We construct the classification and segmentation models that directly take as input this implicit format and also propose a novel augmentation technique to avoid overfitting on backgrounds of images. The code and data are publicly available in https://postech-cvlab.github.io/PeRFception .