论文标题
在存在时间依赖的兴奋剂的情况下,分析准综合区域保护图的绝热陷阱现象
Analysis of adiabatic trapping phenomena for quasi-integrable area-preserving maps in the presence of time-dependent exciters
论文作者
论文摘要
在本文中,详细介绍并详细讨论了有关具有时间依赖的兴奋剂的一类准积分图的绝热诱捕现象的新结果。通过使用扰动理论证明,有关哈密顿系统捕获效率的结果的适用性可以证明所考虑的地图。这允许确定陷阱属性的明确缩放定律。这些发现代表了针对具有参数调制的准积分图获得的先前结果的概括,以及Neishtadt \ textit {et al。}对工作与时间依赖的兴奋剂的限制类别可融合系统上的作品扩展。
In this paper, new results concerning the phenomenon of adiabatic trapping into resonance for a class of quasi-integrable maps with a time-dependent exciter are presented and discussed in detail. The applicability of the results about trapping efficiency for Hamiltonian systems to the maps considered is proven by using perturbation theory. This allows determining explicit scaling laws for the trapping properties. These findings represent a generalization of previous results obtained for the case of quasi-integrable maps with parametric modulation as well as an extension of the work by Neishtadt \textit{et al.} on a restricted class of quasi-integrable systems with time-dependent exciters.