论文标题
慢旋转的黑洞,具有动态的切尔尼斯修饰的重力理论的潜力
Slow-rotating black holes with potential in dynamical Chern-Simons modified gravitational theory
论文作者
论文摘要
Chern-simons修订的重力理论似乎是弦理论的低能量有效理论。有效的理论包括对爱因斯坦 - 希尔伯特作用的异常纠正校正。 Chern-simons表达式由pontryagin密度$ r \ r \ tilde r $的产品组成,带有标量场$φ$,后者被视为背景场(动态结构或非动力构造)。在修订的理论中,爱因斯坦一般相对论的许多不同解决方案仍然有效。但是,KERR指标被认为是一种特殊情况,可以提出寻找旋转黑洞溶液的搜索。我们概括了物理中提出的解决方案。 Rev. d \ textbf {77},064007(2008)通过允许潜在的$ v $具有非散布值,我们讨论了潜在的三种不同情况,即,$ v = \ mathrm {const。} $,$ v \ proptoφ$,以及$ v \ propto之和$ v \ proppotto之updppotto之updpopto之v \ propppot m proppod;本研究首次介绍了在Chern-Simons Gravity的动态配方中规定旋转黑洞的新型解决方案,我们在其中包括潜力并概括了先前衍生的溶液。我们以慢旋转限制得出解决方案,在其中,我们以$ \ varepsilon $来编写慢速扩展的参数。这些溶液是轴对称和固定的,它们通过偶极标量场会使Kerr溶液变形。此外,我们调查,当$ v \ proptoφ$的径向距离的第四顺序上,对度量的纠正在距黑洞中心的第四顺序相反。这表明可以通过弱场实验的任何有意义的限制。
The Chern-Simons amended gravity theory appears as a low-energy effective theory of string theory. The effective theory includes an anomaly-cancelation correction to the Einstein-Hilbert action. The Chern-Simons expression consists of the product $φR \tilde R $ of the Pontryagin density $R \tilde R $ with a scalar field $φ$, where the latter is considered as a background field (dynamical construction or non-dynamical construction). Many different solutions to Einstein's general relativity continue to be valid in the amended theories. The Kerr metric is, however, considered an exceptional case that raised a search for rotating black hole solutions. We generalize the solution presented in Phys. Rev. D \textbf{77}, 064007 (2008) by allowing the potential $V$ to have a non-vanishing value and we discuss three different cases of the potential, that is, $V=\mathrm{const.}$, $V\propto φ$, and $V\propto φ^2$ cases. The present study presents, for the first time, novel solutions prescribing rotating black holes in the frame of the dynamical formulation of the Chern-Simons gravity, where we include a potential and generalize the previously derived solutions. We derive the solutions in the slow-rotation limit, where we write the parameter of the slow-rotation expansion by $\varepsilon$. These solutions are axisymmetric and stationary and they give a distortion of the Kerr solution by a dipole scalar field. Moreover, we investigate that the rectification to the metric behaves in the inverse of the fourth order of radial distance from the center of the black hole when $V\propto φ$. This suggests that any meaningful limits from the weak-field experiments could be passed.