论文标题

非线性Landau-Zener-Stückelberg-Majorana问题

Nonlinear Landau-Zener-Stückelberg-Majorana problem

论文作者

Ashhab, Sahel, Ilinskaya, Olga A., Shevchenko, Sergey N.

论文摘要

在标准的Landau-Zener-Stückelberg-Majorana(LZSM)问题中,偏置扫描率和差距都是独立的,并且完全表征了LZSM问题。我们考虑了非线性LZSM问题,其中两个特征参数中的至少一个随着系统越过避免的越过区域而变化。与理想化的线性LZSM问题相比,这种情况会导致对任何现实情况的更准确描述。我们考虑了扰动非线性的情况,在这种情况下,非线性在线性问题中增加了较小的校正,也是基本非线性的情况,在这种情况下,扫描和/或最小间隙函数与线性LZSM问题的扫描和/或最小间隙函数在质量上有所不同。在扰动非线性的情况下,我们根据标准LZSM公式的领先校正了基于Dykhne-Davis-Pechukas(DDP)公式的LZSM过渡概率的分析表达式。我们将派生的近似表达式与数值模拟结果进行比较,并评论近似值的有效性。特别是,如果非线性项与避免过境遍历的整个有限持续时间相比,与线性项相比很小,则扰动近似是有效的。我们的结果还提供了有关DDP公式有效性的信息。除了审查文献中先前治疗的基本非线性病例外,我们还分析了描述几乎平方脉冲的基本非线性扫描函数的情况。

In the standard Landau-Zener-Stückelberg-Majorana (LZSM) problem, the bias sweep rate and gap are both time independent and fully characterize the LZSM problem. We consider the nonlinear LZSM problem, in which at least one of the two characteristic parameters varies as the system traverses the avoided crossing region. This situation results in what could be thought of as a more accurate description of any realistic situation as compared to the idealized linear LZSM problem. We consider both the case of perturbative nonlinearities, where the nonlinearity adds small corrections to the linear problem, and the case of essential nonlinearities, where the sweep and/or minimum-gap functions are qualitatively different from those of the linear LZSM problem. In the case of perturbative nonlinearities, we derive analytic expressions for the LZSM transition probability based on the Dykhne-Davis-Pechukas (DDP) formula, taking into account the leading corrections to the standard LZSM formula. We compare the derived approximate expressions with numerical simulation results and comment on the validity of the approximations. In particular, if the nonlinear term is small in comparison to the linear term throughout the finite duration of the avoided crossing traversal, the perturbative approximation is valid. Our results also provide information about the validity of the DDP formula. In addition to reviewing cases of essential nonlinearity treated previously in the literature, we analyze the case of an essentially nonlinear sweep function that describes an almost square pulse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源