论文标题

非热 - 海比亚神经网络的频谱

Spectrum of non-Hermitian deep-Hebbian neural networks

论文作者

Jiang, Zijian, Chen, Ziming, Hou, Tianqi, Huang, Haiping

论文摘要

具有复发性不对称耦合的神经网络对于了解如何在大脑中编码情节记忆很重要。在这里,我们将广泛的突触整合窗口的实验性观察整合到连续时间动力学中的序列检索模型中。从理论上讲,具有非正常神经元相互作用的模型是通过在神经动力学中得出雅各布基质的随机基质理论来研究的。这些光谱具有几个不同的特征,例如围绕原点的旋转对称性以及光谱边界内嵌套空隙的出现。因此,光谱密度高度不均匀地分布在复杂平面。随机矩阵理论还可以预测过渡到混乱。特别是,混乱的边缘为记忆的顺序检索提供了计算益处。我们的工作提供了与任意时间延迟有关的时间滞后相关性的系统研究,因此可以激发对广泛记忆模型的未来研究,甚至可以激发生物学时间序列的大数据分析。

Neural networks with recurrent asymmetric couplings are important to understand how episodic memories are encoded in the brain. Here, we integrate the experimental observation of wide synaptic integration window into our model of sequence retrieval in the continuous time dynamics. The model with non-normal neuron-interactions is theoretically studied by deriving a random matrix theory of the Jacobian matrix in neural dynamics. The spectra bears several distinct features, such as breaking rotational symmetry about the origin, and the emergence of nested voids within the spectrum boundary. The spectral density is thus highly non-uniformly distributed in the complex plane. The random matrix theory also predicts a transition to chaos. In particular, the edge of chaos provides computational benefits for the sequential retrieval of memories. Our work provides a systematic study of time-lagged correlations with arbitrary time delays, and thus can inspire future studies of a broad class of memory models, and even big data analysis of biological time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源