论文标题

通过空间聚类算法I:方法检测和分析宇宙网络的拓扑:方法

Detecting and analysing the topology of the cosmic web with spatial clustering algorithms I: Methods

论文作者

Kelesis, Dimitrios, Basilakos, Spyros, Lesta, Vicky Papadopoulou, Fotakis, Dimitris, Efstathiou, Andreas

论文摘要

在本文中,我们探讨了将空间聚类算法用作建模宇宙网络的新计算方法的使用。我们证明,这种算法在所需的计算时间方面是有效的。我们探索了三种不同的空间方法,我们适当地调整了(i)检测宇宙网络的拓扑结构,(ii)基于各种拓扑和物理标准,例如物体距离,物体之间的物理距离,质量和当地的密度,将各种宇宙结构分为空隙,墙壁,簇和超级群体。所探索的方法是(1)一种称为重力晶格的新空间方法; (2)另一个空间聚类算法的修改版本,即算法; (3)众所周知的空间聚类算法HDBSCAN。我们利用HDBSCAN来检测宇宙结构并使用其过度密度对其进行分类。我们证明,算法方法可以与经典的DTFE方法结合使用,以获得所达到的准确性的相似结果,而计算时间的计算时间较小。为了进一步巩固我们的主张,我们从计算机科学领域中获取见解,并在有或不使用我们的方法的情况下比较结果的质量。最后,我们进一步扩展了实验并通过显示出在不同红移形成的不同宇宙网络结构良好扩展的能力来验证其有效性。

In this paper we explore the use of spatial clustering algorithms as a new computational approach for modeling the cosmic web. We demonstrate that such algorithms are efficient in terms of computing time needed. We explore three distinct spatial methods which we suitably adjust for (i) detecting the topology of the cosmic web and (ii) categorizing various cosmic structures as voids, walls, clusters and superclusters based on a variety of topological and physical criteria such as the physical distance between objects, their masses and local densities. The methods explored are (1) a new spatial method called Gravity Lattice ; (2) a modified version of another spatial clustering algorithm, the ABACUS; and (3) the well known spatial clustering algorithm HDBSCAN. We utilize HDBSCAN in order to detect cosmic structures and categorize them using their overdensity. We demonstrate that the ABACUS method can be combined with the classic DTFE method to obtain similar results in terms of the achieved accuracy with about an order of magnitude less computation time. To further solidify our claims, we draw insights from the computer science domain and compare the quality of the results with and without the application of our method. Finally, we further extend our experiments and verify their effectiveness by showing their ability to scale well with different cosmic web structures that formed at different redshifts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源