论文标题

核心型可以足够

The core groupoid can suffice

论文作者

Street, Ross

论文摘要

这项工作是基于对尼古拉斯·库恩(Nicholas Kuhn)的论文的研究,题为“非描述特征中有限领域的通用表示理论”。我们的目标是抽象获得函子类别之间获得等效性所需的分类结构,$ [\ MATHSCR {f},\ MATHSCR {V}] $和$ [\ MATHSCR {G},\ MATHSCR {V}] $ wery $ \ MATHSCR {g} $是$ $ $ $ \ \ \ \ \ \ Math $ \ mathscr {v} $是通勤环上的一个模块类别。

This work results from a study of Nicholas Kuhn's paper entitled "Generic representation theory of finite fields in nondescribing characteristic". Our goal is to abstract the categorical structure required to obtain an equivalence between functor categories $[\mathscr{F},\mathscr{V}]$ and $[\mathscr{G},\mathscr{V}]$ where $\mathscr{G}$ is the core groupoid of the category $\mathscr{F}$ and $\mathscr{V}$ is a category of modules over a commutative ring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源