论文标题
朝开放式视频异常检测
Towards Open Set Video Anomaly Detection
论文作者
论文摘要
开放设置的视频异常检测(OpenVAD)旨在从视频数据中确定异常事件,在测试中都存在已知的异常和新颖的事件。仅从普通视频中学到的无监督模型适用于任何测试异常,但遭受高误报率的影响。相反,弱监督的方法可有效检测已知的异常情况,但在开放世界中可能会失败。我们通过将证据深度学习(EDL)和将流量(NFS)归一化为多个实例学习(MIL)框架来开发出一种新型的OpenVAD问题的弱监督方法。具体而言,我们建议使用图形神经网络和三重态损失来学习训练EDL分类器的区分特征,在该特征中,EDL能够通过量化不确定性来识别未知异常。此外,我们制定了一种不确定性感知的选择策略,以获取清洁异常实例和NFS模块以生成伪异常。我们的方法通过继承无监督的NF和弱监督的MIL框架的优势来优于现有方法。多个现实世界视频数据集的实验结果显示了我们方法的有效性。
Open Set Video Anomaly Detection (OpenVAD) aims to identify abnormal events from video data where both known anomalies and novel ones exist in testing. Unsupervised models learned solely from normal videos are applicable to any testing anomalies but suffer from a high false positive rate. In contrast, weakly supervised methods are effective in detecting known anomalies but could fail in an open world. We develop a novel weakly supervised method for the OpenVAD problem by integrating evidential deep learning (EDL) and normalizing flows (NFs) into a multiple instance learning (MIL) framework. Specifically, we propose to use graph neural networks and triplet loss to learn discriminative features for training the EDL classifier, where the EDL is capable of identifying the unknown anomalies by quantifying the uncertainty. Moreover, we develop an uncertainty-aware selection strategy to obtain clean anomaly instances and a NFs module to generate the pseudo anomalies. Our method is superior to existing approaches by inheriting the advantages of both the unsupervised NFs and the weakly-supervised MIL framework. Experimental results on multiple real-world video datasets show the effectiveness of our method.