论文标题
动态因果协作过滤
Dynamic Causal Collaborative Filtering
论文作者
论文摘要
因果图作为因果建模的有效和强大的工具,通常被假定为有向的无环图(DAG)。但是,推荐系统通常涉及反馈循环,该反馈循环定义为推荐项目,将用户反馈纳入模型更新和重复过程的循环过程。结果,重要的是将循环纳入因果图中,以准确地对推荐系统进行动态和迭代数据生成过程。但是,反馈循环并不总是有益的,因为随着时间的流逝,它们可能会鼓励越来越狭窄的内容暴露,如果无人看管的话,可能会导致回声室。结果,重要的是要了解建议何时会导致回声室以及如何减轻回声室而不会损害建议性能。 在本文中,我们设计了一个带有循环的因果图,以描述推荐的动态过程。然后,我们进行马尔可夫过程来分析回声室的数学特性,例如导致回声室的条件。受理论分析的启发,我们提出了一个动态的因果协作过滤($ \ partial $ ccf)模型,该模型估算了用户基于后门调整的项目的干预后偏好,并通过反事实推理来减轻Echo Echo combers。在现实世界数据集上进行了多个实验,结果表明,我们的框架可以比其他最先进的框架更好地减轻回声室,同时通过基本建议模型实现可比的建议性能。
Causal graph, as an effective and powerful tool for causal modeling, is usually assumed as a Directed Acyclic Graph (DAG). However, recommender systems usually involve feedback loops, defined as the cyclic process of recommending items, incorporating user feedback in model updates, and repeating the procedure. As a result, it is important to incorporate loops into the causal graphs to accurately model the dynamic and iterative data generation process for recommender systems. However, feedback loops are not always beneficial since over time they may encourage more and more narrowed content exposure, which if left unattended, may results in echo chambers. As a result, it is important to understand when the recommendations will lead to echo chambers and how to mitigate echo chambers without hurting the recommendation performance. In this paper, we design a causal graph with loops to describe the dynamic process of recommendation. We then take Markov process to analyze the mathematical properties of echo chamber such as the conditions that lead to echo chambers. Inspired by the theoretical analysis, we propose a Dynamic Causal Collaborative Filtering ($\partial$CCF) model, which estimates users' post-intervention preference on items based on back-door adjustment and mitigates echo chamber with counterfactual reasoning. Multiple experiments are conducted on real-world datasets and results show that our framework can mitigate echo chambers better than other state-of-the-art frameworks while achieving comparable recommendation performance with the base recommendation models.