论文标题

量子内核法的指数浓度

Exponential concentration in quantum kernel methods

论文作者

Thanasilp, Supanut, Wang, Samson, Cerezo, M., Holmes, Zoë

论文摘要

量子机学习(QML)中的内核方法最近引起了人们的重大关注,作为在数据分析中获得量子优势的潜在候选者。在其他有吸引力的属性中,当训练基于内核的模型时,可以保证由于训练格局的凸面而找到最佳模型的参数。但是,这是基于以下假设:量子内核可以从量子硬件有效地获得。在这项工作中,我们从准确估计内核值所需的资源的角度研究了量子内核模型的性能。我们表明,在某些条件下,在不同输入数据上的量子内核值可以被指数浓缩(以量子位数为数),以指向一些固定值。因此,在使用多项式测量值的训练中,最终以一个琐碎的模型结束,其中看不见的输入的预测与输入数据无关。我们确定可以导致集中度的四个来源,包括:数据嵌入,全球测量,纠缠和噪声的表现力。对于每个来源,分析得出量子内核的相关浓度结合。最后,我们表明,在处理经典数据时,培训用内核比对方法嵌入的参数化数据也容易受到指数浓度的影响。我们的结果通过数值模拟来验证几个QML任务。总体而言,我们提供指南,表明应避免某些特征,以确保对量子内核的有效评估以及量子内核方法的性能。

Kernel methods in Quantum Machine Learning (QML) have recently gained significant attention as a potential candidate for achieving a quantum advantage in data analysis. Among other attractive properties, when training a kernel-based model one is guaranteed to find the optimal model's parameters due to the convexity of the training landscape. However, this is based on the assumption that the quantum kernel can be efficiently obtained from quantum hardware. In this work we study the performance of quantum kernel models from the perspective of the resources needed to accurately estimate kernel values. We show that, under certain conditions, values of quantum kernels over different input data can be exponentially concentrated (in the number of qubits) towards some fixed value. Thus on training with a polynomial number of measurements, one ends up with a trivial model where the predictions on unseen inputs are independent of the input data. We identify four sources that can lead to concentration including: expressivity of data embedding, global measurements, entanglement and noise. For each source, an associated concentration bound of quantum kernels is analytically derived. Lastly, we show that when dealing with classical data, training a parametrized data embedding with a kernel alignment method is also susceptible to exponential concentration. Our results are verified through numerical simulations for several QML tasks. Altogether, we provide guidelines indicating that certain features should be avoided to ensure the efficient evaluation of quantum kernels and so the performance of quantum kernel methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源