论文标题

因果熵优化

Causal Entropy Optimization

论文作者

Branchini, Nicola, Aglietti, Virginia, Dhir, Neil, Damoulas, Theodoros

论文摘要

我们研究了全局优化因果关系变量的因果关系变量的问题,在该目标变量中可以进行干预措施。这个问题在许多科学领域都引起,包括生物学,运营研究和医疗保健。我们提出了因果熵优化(CEO),该框架概括了因果贝叶斯优化(CBO),以说明所有不确定性来源,包括由因果图结构引起的。首席执行官在因果效应的替代模型中以及用于通过信息理论采集函数选择干预措施的机制中纳入了因果结构的不确定性。所得算法自动交易结构学习和因果效应优化,同时自然考虑观察噪声。对于各种合成和现实世界的结构性因果模型,与CBO相比,CEO可以更快地与全局最佳达到融合,同时还可以学习图形。此外,我们结构学习和因果优化的联合方法在顺序的结构学习优先级方法上改善了。

We study the problem of globally optimizing the causal effect on a target variable of an unknown causal graph in which interventions can be performed. This problem arises in many areas of science including biology, operations research and healthcare. We propose Causal Entropy Optimization (CEO), a framework that generalizes Causal Bayesian Optimization (CBO) to account for all sources of uncertainty, including the one arising from the causal graph structure. CEO incorporates the causal structure uncertainty both in the surrogate models for the causal effects and in the mechanism used to select interventions via an information-theoretic acquisition function. The resulting algorithm automatically trades-off structure learning and causal effect optimization, while naturally accounting for observation noise. For various synthetic and real-world structural causal models, CEO achieves faster convergence to the global optimum compared with CBO while also learning the graph. Furthermore, our joint approach to structure learning and causal optimization improves upon sequential, structure-learning-first approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源