论文标题
提高了抛物线PDE的时空FOSL的速率
Improved rates for a space-time FOSLS of parabolic PDEs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider the first-order system space-time formulation of the heat equation introduced in [Bochev, Gunzburger, Springer, New York (2009)], and analyzed in [Führer, Karkulik, Comput. Math. Appl. 92 (2021)] and [Gantner, Stevenson, ESAIM Math. Model. Numer. Anal.} 55 (2021)], with solution components $(u_1,{\bf u}_2)=(u,-\nabla_{\bf x} u)$. The corresponding operator is boundedly invertible between a Hilbert space $U$ and a Cartesian product of $L_2$-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides $L_2$-norms of $\nabla_{\bf x} u_1$ and ${\bf u}_2$, the (graph) norm of $U$ contains the $L_2$-norm of $\partial_t u_1 +{\rm div}_{\bf x} {\bf u}_2$. When applying standard finite elements w.r.t. simplicial partitions of the space-time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of ${\bf u}_2$. In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions $u$. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of $\partial_t u_1 +{\rm div}_{\bf x} {\bf u}_2$, i.e., of the forcing term $f=(\partial_t-Δ_x)u$. Numerical results show significantly improved convergence rates.