论文标题
部分可观测时空混沌系统的无模型预测
Time-lapse image classification using a diffractive neural network
论文作者
论文摘要
衍射深神经网络(D2NNS)定义了一个由空间工程的被动表面组成的全光计算框架,该框架通过调节传播光的振幅和/或相位来共同处理光学输入信息。衍射光学网络通过薄衍射量以光的速度来完成其计算任务,而无需任何外部计算能力,同时利用了光学的巨大并行性。证明了衍射网络以实现对象的全光分类并执行通用线性变换。在这里,我们首次使用衍射网络证明了一种“延时”图像分类方案,通过使用相对于彼此,使用输入对象和/或衍射网络的横向运动来显着提高其在复杂输入对象上的分类准确性和泛化性能。在不同的上下文中,对象和/或相机的相对运动通常用于图像超分辨率应用程序。受其成功的启发,我们设计了一个延时衍射网络,以受益于由受控或随机横向移动创建的互补信息内容。我们从数值探索了延时衍射网络的设计空间和性能限制,从CIFAR-10数据集的对象进行光学分类中揭示了62.03%的盲测精度。这构成了迄今使用CIFAR-10数据集上的单个衍射网络达到的最高推理精度。延时衍射网络将对使用全光处理器的输入信号的时空分析广泛有用。
Diffractive deep neural networks (D2NNs) define an all-optical computing framework comprised of spatially engineered passive surfaces that collectively process optical input information by modulating the amplitude and/or the phase of the propagating light. Diffractive optical networks complete their computational tasks at the speed of light propagation through a thin diffractive volume, without any external computing power while exploiting the massive parallelism of optics. Diffractive networks were demonstrated to achieve all-optical classification of objects and perform universal linear transformations. Here we demonstrate, for the first time, a "time-lapse" image classification scheme using a diffractive network, significantly advancing its classification accuracy and generalization performance on complex input objects by using the lateral movements of the input objects and/or the diffractive network, relative to each other. In a different context, such relative movements of the objects and/or the camera are routinely being used for image super-resolution applications; inspired by their success, we designed a time-lapse diffractive network to benefit from the complementary information content created by controlled or random lateral shifts. We numerically explored the design space and performance limits of time-lapse diffractive networks, revealing a blind testing accuracy of 62.03% on the optical classification of objects from the CIFAR-10 dataset. This constitutes the highest inference accuracy achieved so far using a single diffractive network on the CIFAR-10 dataset. Time-lapse diffractive networks will be broadly useful for the spatio-temporal analysis of input signals using all-optical processors.