论文标题

基于弦的分子通过多二十座VAE生成

String-based Molecule Generation via Multi-decoder VAE

论文作者

Kwon, Kisoo, Jung, Kuhwan, Park, Junghyun, Na, Hwidong, Shin, Jinwoo

论文摘要

在本文中,我们通过各种自动编码器(VAE)研究了基于弦的分子生成的问题,这些问题已经为人工智能的各种任务提供了一种流行的生成方法。我们提出了一个简单而有效的想法,以提高VAE的绩效。我们的主要思想是在共享单个编码器的同时维护多个解码器,即,它是一种合奏技术。在这里,我们首先发现每个解码器都可能没有有效,因为合奏解码器的偏见在其自动回归推理下会严重增加。为了保持集成模型的较小偏见和差异,我们提出的技术是双重的:(a)为每个解码器采样不同的潜在变量(从共享编码器提供的估计平均值和差异)以鼓励解码器的多样性和(b)在培训过程中使用不同的质量质量的培训来使用培训期间使用不同的latents variaia的培训。在我们的实验中,提出的VAE模型特别表现良好,可从域外分布产生样本。

In this paper, we investigate the problem of string-based molecular generation via variational autoencoders (VAEs) that have served a popular generative approach for various tasks in artificial intelligence. We propose a simple, yet effective idea to improve the performance of VAE for the task. Our main idea is to maintain multiple decoders while sharing a single encoder, i.e., it is a type of ensemble techniques. Here, we first found that training each decoder independently may not be effective as the bias of the ensemble decoder increases severely under its auto-regressive inference. To maintain both small bias and variance of the ensemble model, our proposed technique is two-fold: (a) a different latent variable is sampled for each decoder (from estimated mean and variance offered by the shared encoder) to encourage diverse characteristics of decoders and (b) a collaborative loss is used during training to control the aggregated quality of decoders using different latent variables. In our experiments, the proposed VAE model particularly performs well for generating a sample from out-of-domain distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源