论文标题

社交媒体指纹隐私保护的分层感知噪声保护

Hierarchical Perceptual Noise Injection for Social Media Fingerprint Privacy Protection

论文作者

Li, Simin, Xu, Huangxinxin, Wang, Jiakai, Liu, Aishan, He, Fazhi, Liu, Xianglong, Tao, Dacheng

论文摘要

数十亿人每天都在社交媒体上分享他们的日常生活图像。但是,它们的生物识别信息(例如,指纹)可以很容易地从这些图像中偷走。从社交媒体中泄漏的指纹泄漏的威胁引起了人们对匿名分享图像的强烈渴望,同时保持图像质量,因为指纹充当了终生的个体生物识别密码。为了防止指纹泄漏,通过在图像上添加不可察觉的扰动,将对抗性攻击作为解决方案出现。但是,现有作品要么在黑盒可传递性方面弱,要么显得不自然。由视觉感知层次结构(即,高级感知利用模型共享的语义,这些语义都很好地转移了模型,而低级感知提取物将原始刺激引起原始刺激,并且会引起高视觉敏感性的刺激),我们提出了一个层次的感知保护噪声注射框架,以解决提出的问题。对于黑盒可传递性,我们在指纹方向场上注入保护性噪声,以扰动模型共享的高级语义(即指纹脊)。考虑到视觉自然性,我们通过正规化侧向基因核的响应来抑制低级局部对比度刺激。我们的Fingersafe是第一个在数字(最高94.12%)和现实的场景(Twitter和Facebook,高达68.75%)中提供可行的指纹保护的人。我们的代码可以在https://github.com/nlsde-safety-team/fingersafe上找到。

Billions of people are sharing their daily life images on social media every day. However, their biometric information (e.g., fingerprint) could be easily stolen from these images. The threat of fingerprint leakage from social media raises a strong desire for anonymizing shared images while maintaining image qualities, since fingerprints act as a lifelong individual biometric password. To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images. However, existing works are either weak in black-box transferability or appear unnatural. Motivated by visual perception hierarchy (i.e., high-level perception exploits model-shared semantics that transfer well across models while low-level perception extracts primitive stimulus and will cause high visual sensitivities given suspicious stimulus), we propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems. For black-box transferability, we inject protective noises on fingerprint orientation field to perturb the model-shared high-level semantics (i.e., fingerprint ridges). Considering visual naturalness, we suppress the low-level local contrast stimulus by regularizing the response of Lateral Geniculate Nucleus. Our FingerSafe is the first to provide feasible fingerprint protection in both digital (up to 94.12%) and realistic scenarios (Twitter and Facebook, up to 68.75%). Our code can be found at https://github.com/nlsde-safety-team/FingerSafe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源