论文标题

Q-HyperConvex船体的稳定性

Stability of the q-hyperconvex hull of a quasi-metric space

论文作者

Zava, Nicolò

论文摘要

在本文中,我们研究了准中空间的Q-HyperConvex船体的稳定性,以适应公制空间的超凸壳的已知结果。为了实现这一目标,我们将众所周知的公制概念(例如Gromov-Hausdorff距离和粗糙的异形法)扩展到了准中空间的领域。特别是,我们证明了两个Q-HyperConvex船体相对于Gromov-Hausdorff的距离很近,如果是原始空间。此外,我们提供了那些在其Q-HyperConvex船体中符合的空间的内在表征。

In this paper, we study the stability of the q-hyperconvex hull of a quasi-metric space, adapting known results for the hyperconvex hull of a metric space. To pursue this goal, we extend well-known metric notions, such as Gromov-Hausdorff distance and rough isometries, to the realm of quasi-metric spaces. In particular, we prove that two q-hyperconvex hulls are close with respect to the Gromov-Hausdorff distance if so are the original spaces. Moreover, we provide an intrinsic characterisation of those spaces that are Sym-large in their q-hyperconvex hulls.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源