论文标题
新的线性稳定性参数以描述低$β$电磁微生不足能力,由轴对称环形的几何以下电子驱动
New linear stability parameter to describe low-$β$ electromagnetic microinstabilities driven by passing electrons in axisymmetric toroidal geometry
论文作者
论文摘要
在磁性限制融合设备中,等离子体压力与磁场能的比率($β$)可以变得足够大,以至于电磁微插入性变得不稳定,驱动湍流扭曲或重新连接平衡磁场。在本文中,提出了一种理论,用于电磁,电子驱动的线性不稳定性,该线性不稳定性的电流层位于模式理性表面和与离子gyroradius相当的双向波长。该模型以任意形状保留轴对称的环形几何形状,并由模式理性表面层的轨道平均方程组成,并具有传递电子的气球空间动力学匹配条件。匹配条件将电流层连接到大规模电磁波动,并在$β$与电子与质量比的平方根相媲美的极限中得出。电磁波动仅通过匹配条件进入,从而识别有效的$β$,其中包括平衡通量表面形状的影响。与渐近理论相比,渐近理论的缩放预测与桅杆放电#6252中的微型和静电微生态的线性模拟的结果进行了比较,显示出极好的一致性。特别是,有效的$β$可以解释局部微润滑模式(MTM)生长速率对气球参数$θ_0$的依赖性 - 可能提供了优化局部通量表面以减少MTM驱动运输的途径。
In magnetic confinement fusion devices, the ratio of the plasma pressure to the magnetic field energy, $β$, can become sufficiently large that electromagnetic microinstabilities become unstable, driving turbulence that distorts or reconnects the equilibrium magnetic field. In this paper, a theory is proposed for electromagnetic, electron-driven linear instabilities that have current layers localised to mode-rational surfaces and binormal wavelengths comparable to the ion gyroradius. The model retains axisymmetric toroidal geometry with arbitrary shaping, and consists of orbit-averaged equations for the mode-rational surface layer, with a ballooning space kinetic matching condition for passing electrons. The matching condition connects the current layer to the large scale electromagnetic fluctuations, and is derived in the limit that $β$ is comparable to the square root of the electron-to-ion-mass ratio. Electromagnetic fluctuations only enter through the matching condition, allowing for the identification of an effective $β$ that includes the effects of equilibrium flux surface shaping. The scaling predictions made by the asymptotic theory are tested with comparisons to results from linear simulations of micro-tearing and electrostatic microinstabilities in MAST discharge #6252, showing excellent agreement. In particular, it is demonstrated that the effective $β$ can explain the dependence of the local micro-tearing mode (MTM) growth rate on the ballooning parameter $θ_0$ -- possibly providing a route to optimise local flux surfaces for reduced MTM-driven transport.