论文标题

使用高分辨率多光谱图像在大规模城市环境中的单个树木检测

Individual Tree Detection in Large-Scale Urban Environments using High-Resolution Multispectral Imagery

论文作者

Ventura, Jonathan, Pawlak, Camille, Honsberger, Milo, Gonsalves, Cameron, Rice, Julian, Love, Natalie L. R., Han, Skyler, Nguyen, Viet, Sugano, Keilana, Doremus, Jacqueline, Fricker, G. Andrew, Yost, Jenn, Ritter, Matt

论文摘要

我们介绍了一种新颖的深度学习方法,可使用高分辨率的多光谱空中图像在城市环境中检测单个树木。我们使用卷积神经网络来回归一个置信图,指示单个树的位置,这些位置是使用峰发现算法本地化的。我们的方法通过检测公共和私人空间中的树木来提供完整的空间覆盖范围,并可以扩展到很大的区域。我们对我们的方法进行了彻底的评估,并由1,500多个图像和近100,000棵树注释的新数据集进行了支持,涵盖了八个城市,六个气候区和三个图像捕获年。我们培训了来自南加州的数据的模型,并使用该地区的测试数据获得了73.6%的精度,并召回了73.3%。当推断到其他加利福尼亚气候区和图像捕获日期时,我们通常观察到相似的精度和稍低的回忆。我们使用我们的方法在加利福尼亚的整个城市森林中生产树木图,并估计加利福尼亚的城市树木总数约为4350万。我们的研究表明,在前所未有的量表上,深度学习方法的潜力支持未来的城市林业研究。

We introduce a novel deep learning method for detection of individual trees in urban environments using high-resolution multispectral aerial imagery. We use a convolutional neural network to regress a confidence map indicating the locations of individual trees, which are localized using a peak finding algorithm. Our method provides complete spatial coverage by detecting trees in both public and private spaces, and can scale to very large areas. We performed a thorough evaluation of our method, supported by a new dataset of over 1,500 images and almost 100,000 tree annotations, covering eight cities, six climate zones, and three image capture years. We trained our model on data from Southern California, and achieved a precision of 73.6% and recall of 73.3% using test data from this region. We generally observed similar precision and slightly lower recall when extrapolating to other California climate zones and image capture dates. We used our method to produce a map of trees in the entire urban forest of California, and estimated the total number of urban trees in California to be about 43.5 million. Our study indicates the potential for deep learning methods to support future urban forestry studies at unprecedented scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源