论文标题

通过环形夹杂物周围的空隙渗透

Percolation through Voids around Toroidal Inclusions

论文作者

Ballow, A., Linton, P., Priour Jr, D. J.

论文摘要

在由不可渗透颗粒组成的培养基的情况下,流体在无法穿透的晶粒周围流过空隙。对于后者足够低浓度的浓度,晶粒周围的空间连接起来以允许在宏观尺度上运输,而较大的坚不可摧的包容密度破坏了空隙网络和阻断宏观液体流动。临界晶粒浓度$ρ_{C} $标记了将这两个制度分开的渗透过渡或相边界。通过一种动力学浸润技术,虚拟示踪剂颗粒探索了空间,我们计算了临界晶粒浓度,以便随机放置不可渗透的环形环状夹杂物。后者由圆形和方形横截面的革命表面组成。通过这种方式,我们首次研究涉及非凸晶粒的连续渗透转变。随着革命半径相对于圆环横截面的长度尺度的增加,托里会形成一个中央孔,拓扑转变伴随着尖端的渗透率。随着革命半径的进一步增加,随着成分晶粒的外观越来越像环,我们发现临界孔隙率仅用于随机定向的晶粒而收敛到高纵横比圆柱形的高度比率。

In the case of media comprised of impermeable particles, fluid flows through voids around impenetrable grains. For sufficiently low concentrations of the latter, spaces around grains join to allow transport on macroscopic scales, whereas greater impenetrable inclusion densities disrupt void networks and block macroscopic fluid flow. A critical grain concentration $ρ_{c}$ marks the percolation transition or phase boundary separating these two regimes. With a dynamical infiltration technique in which virtual tracer particles explore void spaces, we calculate critical grain concentrations for randomly placed interpenetrating impermeable toroidal inclusions; the latter consist of surfaces of revolution with circular and square cross sections. In this manner, we study for the first time continuum percolation transitions involving non-convex grains. As the radius of revolution increases relative to the length scale of the torus cross section, the tori develop a central hole, a topological transition accompanied by a cusp in the critical porosity for percolation. With a further increase in the radius of revolution, as constituent grains become more ring-like in appearance, we find that the critical porosity converges to that of high aspect ratio cylindrical counterparts only for randomly oriented grains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源