论文标题

部分可观测时空混沌系统的无模型预测

Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future B-mode polarization measurements

论文作者

Paoletti, Daniela, Finelli, Fabio, Valiviita, Jussi, Hazumi, Masashi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Current and future B-mode polarization data are the most powerful observables to constrain gravitational waves from the early Universe. We set conservative constraints on tensor modes when relaxing the inflationary consistency condition $n_t=-r/8$ between the tensor tilt $n_t$ and the tensor-to-scalar ratio r. By adding a power-law spectrum of tensor perturbations to $Λ$CDM, and parameterizing this tensor contribution by two independent primordial tensor-to-scalar ratios $(r_1,r_2)$ at $k_1 = 0.005$ Mpc$^{-1}$ and $k_2 = 0.02$ Mpc$^{-1}$, Planck and BICEP/Keck Array 2018 data (BK18) lead to constraints $r_{0.005} < 0.030$ and $r_{0.02} < 0.098$ at 95% CL. The corresponding upper bound $r_{0.01} < 0.039$ is by a factor of 2 tighter than the one obtained with Planck 2018 and the older BK15 data. We then study the perspectives for future CMB experiments that will measure both the reionization bump and recombination peak of the B-mode polarization angular power spectrum, such as LiteBIRD. We test the robustness of the results to the choice of the scales for $(r_1,r_2)$ in these future perspectives. Whereas distinguishing $n_t=-r/8$ from exact scale invariance is impossible as expected, we show how radical, theoretically motivated departures from $n_t=-r/8$, which are consistent with the current data, could be distinguished with LiteBIRD. Moreover, LiteBIRD will be able to shrink the allowed parameter space area in the $(r_{0.005},r_{0.02})$ plane to less than one hundredth of the currently allowed area by Planck 2018 and BK18.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源