论文标题
部分可观测时空混沌系统的无模型预测
A Tight Upper Bound on the Average Order of Dominating Sets of a Graph
论文作者
论文摘要
在本文中,我们研究了图中统治集的平均顺序,$ \ operatotorname {avd}(g)$。与其他平均图参数一样,极端图也是如此。 Beaton和Brown(2021)猜想,对于所有图表,$ n $的$ g $ of soldated $ n $没有隔离的顶点,$ \ permatatorname {avd}(g)\ leq 2n/3 $。最近,Erey(2021)证明了没有孤立顶点的森林的猜想。在本文中,我们证明了猜想并分类哪些图具有$ \ permatatorName {avd}(g)= 2n/3 $。我们还使用界限来证明Viping的猜想的平均版本。
In this paper we study the the average order of dominating sets in a graph, $\operatorname{avd}(G)$. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown (2021) conjectured that for all graphs $G$ of order $n$ without isolated vertices, $\operatorname{avd}(G) \leq 2n/3$. Recently, Erey (2021) proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have $\operatorname{avd}(G) = 2n/3$. We also use our bounds to prove the average version of Vizing's Conjecture.