论文标题

Brun-titchmarsh定理的模块化形式和明确的Chebotarev变体

Modular forms and an explicit Chebotarev variant of the Brun-Titchmarsh theorem

论文作者

Hu, Daniel, Iyer, Hari R., Shashkov, Alexander

论文摘要

我们证明了Brun-titchmarsh定理的明确Chebotarev变体。这导致了最著名的无条件上限的明确版本,朝向lang and Trotter的猜想,以构成全体形态尖锐的新形式的系数。特别是,我们证明了$ \ lim_ {x \ to \ infty} \ frac {\#\ {1 \ leq n \ leq n \ leq x \ mid th \ midτ(n)\ neq 0 \ neq 0 \}} {x} {x}> 1-1.15 \ times 10^times 10^{ - 12^{ - 12} { - 12},$ ram $ ram pran $ taujany是$ tauj(这是正整数$ n $比例的第一个已知的正无条件下限,因此$τ(n)\ neq 0 $。

We prove an explicit Chebotarev variant of the Brun--Titchmarsh theorem. This leads to explicit versions of the best-known unconditional upper bounds toward conjectures of Lang and Trotter for the coefficients of holomorphic cuspidal newforms. In particular, we prove that $$\lim_{x \to \infty} \frac{\#\{1 \leq n \leq x \mid τ(n) \neq 0\}}{x} > 1-1.15 \times 10^{-12},$$ where $τ(n)$ is Ramanujan's tau-function. This is the first known positive unconditional lower bound for the proportion of positive integers $n$ such that $τ(n) \neq 0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源