论文标题

一个简单的学习代理与基于代理的市场模型互动

A simple learning agent interacting with an agent-based market model

论文作者

Dicks, Matthew, Paskaramoorthy, Andrew, Gebbie, Tim

论文摘要

我们考虑到单个强化学习最佳执行代理人与基于事件驱动的代理商的金融市场模型进行交互时的学习动力。交易在事件时间内通过匹配引擎进行异步进行。最佳执行代理在不同级别的初始订单尺寸和不同尺寸的状态空间上进行考虑。使用校准方法考虑了对基于代理的模型和市场的影响,该方法探讨了经验风格的事实和价格影响曲线的变化。收敛,音量轨迹和动作痕迹图用于可视化学习动力学。在这里,较小的国家空间代理人的访问状态数量比较大的州空间代理快得多,他们能够开始学习使用差异和体积状态进行直观的贸易。我们发现,模型的时刻对学习代理人的影响很强,除了赫斯特指数,这通过引入战略订单分解而降低了。学习代理的引入保留了价格影响曲线的形状,但在交易量增加时可以减少贸易符号自动相关。

We consider the learning dynamics of a single reinforcement learning optimal execution trading agent when it interacts with an event driven agent-based financial market model. Trading takes place asynchronously through a matching engine in event time. The optimal execution agent is considered at different levels of initial order-sizes and differently sized state spaces. The resulting impact on the agent-based model and market are considered using a calibration approach that explores changes in the empirical stylised facts and price impact curves. Convergence, volume trajectory and action trace plots are used to visualise the learning dynamics. Here the smaller state space agents had the number of states they visited converge much faster than the larger state space agents, and they were able to start learning to trade intuitively using the spread and volume states. We find that the moments of the model are robust to the impact of the learning agents except for the Hurst exponent, which was lowered by the introduction of strategic order-splitting. The introduction of the learning agent preserves the shape of the price impact curves but can reduce the trade-sign auto-correlations when their trading volumes increase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源