论文标题
METAFI:通过商品wifi进行元模拟的商品wifi估算的无设备姿势估算
MetaFi: Device-Free Pose Estimation via Commodity WiFi for Metaverse Avatar Simulation
论文作者
论文摘要
阿凡达(Avatar)是指虚拟世界中物理用户的代表,该代表可以从事不同的活动并与Metaverse中的其他对象进行交互。模拟化身需要准确的人类姿势估计。尽管基于相机的解决方案产生了出色的性能,但它们遇到了隐私问题,并因不同的照明而引起的性能退化,尤其是在智能家中。在本文中,我们提出了一种基于WiFi的IOT基于Metavers Avatar模拟的人类姿势估计方案,即Metafi。具体而言,深度神经网络设计具有定制的卷积层和残差块,以将渠道状态信息映射到人体姿势地标。它被强制从准确的计算机视觉模型中学习注释,从而实现跨模式的监督。 WiFi无处不在且强大的照明,使其成为Smart Home中的头像应用的可行解决方案。实验是在现实世界中进行的,结果表明,Metafi以95.23%的50@PCK实现了很高的性能。
Avatar refers to a representative of a physical user in the virtual world that can engage in different activities and interact with other objects in metaverse. Simulating the avatar requires accurate human pose estimation. Though camera-based solutions yield remarkable performance, they encounter the privacy issue and degraded performance caused by varying illumination, especially in smart home. In this paper, we propose a WiFi-based IoT-enabled human pose estimation scheme for metaverse avatar simulation, namely MetaFi. Specifically, a deep neural network is designed with customized convolutional layers and residual blocks to map the channel state information to human pose landmarks. It is enforced to learn the annotations from the accurate computer vision model, thus achieving cross-modal supervision. WiFi is ubiquitous and robust to illumination, making it a feasible solution for avatar applications in smart home. The experiments are conducted in the real world, and the results show that the MetaFi achieves very high performance with a PCK@50 of 95.23%.