论文标题
施泰纳三重系统中的埃利奥特·里德(Elliott-Rödl)猜想的证明
A proof of the Elliott-Rödl conjecture on hypertrees in Steiner triple systems
论文作者
论文摘要
大型是线性超图,其中每个两个顶点都通过独特的路径连接。埃利奥特(Elliott)和罗德(Rödl)猜想,对于任何给定的$μ> 0 $,存在$ n_0 $,以便以下内容保持。每当$ n \ n \ geq n_0 $时,每$ n $ vertex steiner三重系统最多都包含最多$(1-μ)n $顶点的所有hyprees。我们证明了这个猜想。
Hypertrees are linear hypergraphs where every two vertices are connected by a unique path. Elliott and Rödl conjectured that for any given $μ>0$, there exists $n_0$ such that the following holds. Every $n$-vertex Steiner triple system contains all hypertrees with at most $(1-μ)n$ vertices whenever $n\geq n_0$. We prove this conjecture.