论文标题

关于互补棱镜的单声音凸度

On the monophonic convexity in complementary prisms

论文作者

K., Neethu P., V., Ullas Chandran S., Nascimento, Julliano R.

论文摘要

如果$ s $包含所有属于$ s $的两个顶点的所有诱导路径的所有顶点,则图$ g $的$ s $是$ g $的顶点。 $ g $的最大正确单声音凸的基数称为$ g $的\ emph {单声音凸数}。 $ g $的$ s $的$ s $的\ emph {单声音间隔}是$ g $的$ s $是套件$ s $,每个顶点属于任何诱导的路径,连接两个$ s $的顶点。最低集合$ s \ subseteq v(g)$的基数为$ v(g)$,称为$ g $的\ emph {nonophonic number}。 $ g $的$ s $顶点的\ emph {单声音凸壳}是$ g $中包含$ s $的最小的单声音凸套装。最低集合$ s \ subseteq v(g)$的基数为$ v(g)$,称为$ g $的\ emph {nonophonic hull number}。 \ emph {互补的prism} $ \ gg $ $ g $的$ gg $是从$ g $的不相交联合及其补充$ \ overline {g} $获得的,通过添加它们之间的完美匹配的边缘。在这项工作中,我们确定了所有图的单声音凸数,单声音数和互补棱镜的单声音船体数。

A set $S$ of vertices of a graph $G$ is \emph{monophonic convex} if $S$ contains all the vertices belonging to any induced path connecting two vertices of $S$. The cardinality of a maximum proper monophonic convex set of $G$ is called the \emph{monophonic convexity number} of $G$. The \emph{monophonic interval} of a set $S$ of vertices of $G$ is the set $S$ together with every vertex belonging to any induced path connecting two vertices of $S$. The cardinality of a minimum set $S \subseteq V(G)$ whose monophonic interval is $V(G)$ is called the \emph{monophonic number} of $G$. The \emph{monophonic convex hull} of a set $S$ of vertices of $G$ is the smallest monophonic convex set containing $S$ in $G$. The cardinality of a minimum set $S \subseteq V(G)$ whose monophonic convex hull is $V(G)$ is called the \emph{monophonic hull number} of $G$. The \emph{complementary prism} $\GG$ of $G$ is obtained from the disjoint union of $G$ and its complement $\overline{G}$ by adding the edges of a perfect matching between them. In this work, we determine the monophonic convexity number, the monophonic number, and the monophonic hull number of the complementary prisms of all graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源