论文标题

在Schur定理的nilpotent Like superalgebras上

On converse of the Schur's theorem for nilpotent Lie superalgebras

论文作者

Shamsaki, A., Niroomand, P., Stitzinger, E.

论文摘要

在本文中,我们与Schur的定理建立了与Superalgebras \(L \)的相反,重点是考虑最小生成器编号对\(((p \ vert Q)的\(l/z(l)),考虑了superdimension \ \ \ \ \ \ m m iS fin fil(l/z(l)\)。我们介绍了一个新的不变\(st(l)\),该\(st(l)\)在有限维nilpotent的分类中起关键作用。具体而言,当\(st(l)\ in \ in \ {(0,0),(1,0),(1,0),(0,1),(2,0),(2,0),(0,2),(1,1),(1,1)\)时,我们将所有此类lie superalgebras \(l \)的结构分类。

In this paper, we establish a converse to Schur's theorem for Lie superalgebras \( L \), focusing on cases where the minimal generator number pairs \((p \vert q)\) of \( L/Z(L) \) are considered, and where the superdimension \( \mathrm{sdim} L^{2} \) is finite. We introduce a new invariant \( st(L) \), which plays a key role in the classification of finite-dimensional nilpotent Lie superalgebras. Specifically, we classify the structure of all such Lie superalgebras \( L \) when \( st(L) \in \{(0,0), (1,0), (0,1), (2,0), (0,2), (1,1)\} \).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源