论文标题
蒙特卡洛研究具有随机各向异性的经典XY铁磁体中的相变
Monte Carlo study of the phase transitions in the classical XY ferromagnets with random anisotropy
论文作者
论文摘要
三维各向异性经典XY Ferromagnet已通过使用Metropolis单个自旋翻转算法进行了广泛的蒙特卡洛模拟研究。测量并研究了磁化($ M $)和易感性($χ$)作为系统温度的功能。对于恒定各向异性,已经发现铁para相变的温度比各向同性情况更高的温度发生。该系统在较高的温度下被订购,以较高的各向异性强度值。在随机各向异性的情况下观察到相反的情况。对于随机各向异性的所有三种不同类型的统计分布(均匀,高斯和双峰),该系统在较低温度下被订购,以较高的各向异性分布的宽度值。在随机各向异性的情况下,我们提供了相边界。通过有限尺寸分析估算了缩放定律的关键指数$ m \ sim l^{ - {β\ fove fove coftν}} $和$χ\ sim l^{γ{γ\ {γ\ oftν} $。
The three-dimensional anisotropic classical XY ferromagnet has been investigated by extensive Monte Carlo simulation using the Metropolis single spin flip algorithm. The magnetization ($M$) and the susceptibility ($χ$) are measured and studied as functions of the temperature of the system. For constant anisotropy, the ferro-para phase transition has been found to take place at a higher temperature than that observed in the isotropic case. The system gets ordered at higher temperatures for higher values of the strength of anisotropy. The opposite scenario is observed in the case of random anisotropy. For all three different kinds of statistical distributions (uniform, Gaussian, and bimodal) of random anisotropy, the system gets ordered at lower temperatures for higher values of the width of the distribution of anisotropy. We have provided the phase boundaries in the case of random anisotropy. The critical exponents for the scaling laws $M \sim L^{-{β \over ν}}$ and $χ\sim L^{γ \over ν} $ are estimated through the finite size analysis.