论文标题
关于开放XXZ链的相关函数,具有非纵向边界场:具有约束的情况
On correlation functions for the open XXZ chain with non-longitudinal boundary fields : the case with a constraint
论文作者
论文摘要
本文是[1]的延续,其中为XXZ Spin-1/2开放链计算了一组本地运算符的矩阵元素,并具有特定的无与伦比的边界字段。在这里,我们将这些结果扩展到更一般的情况,在这个情况下,这两个领域都是非态度的,并且通过一个约束,从而可以通过通常的伯特方程来部分描述频谱。更确切地说,可以在变量(SOV)框架的分离中表征完整的频谱和特征状态。在这里,人们使用了一个事实,即在约束下,可以通过通常的,同质的,TQ-方程式的溶液来描述该SOV光谱的一部分,并具有相应的传递矩阵特征态与广义的伯特状态相吻合。我们解释了如何普遍计算本地运营商对这种状态的基础的作用,以及在链的最后一个站点上最通用的边界条件下。结果,我们可以在同质TQ-方程所描述的任何特征态中计算其中一些基础元素的矩阵元素。假设遵循尼波莫基和拉瓦尼尼的猜想,可以在本框架中描述基态本身,我们在半限制链限制中为这些矩阵元素获得了多个积分表示,在纵向边界领域以及在[1]中考虑的特殊边界条件的情况下,先前获得的链条元素概括了。
This paper is a continuation of [1], in which a set of matrix elements of local operators was computed for the XXZ spin-1/2 open chain with a particular case of unparallel boundary fields. Here, we extend these results to the more general case in which both fields are non-longitudinal and related by one constraint, allowing for a partial description of the spectrum by usual Bethe equations. More precisely, the complete spectrum and eigenstates can be characterized within the Separation of Variables (SoV) framework. One uses here the fact that, under the constraint, a part of this SoV spectrum can be described via solutions of a usual, homogeneous, TQ-equation, with corresponding transfer matrix eigenstates coinciding with generalized Bethe states. We explain how to generically compute the action of a basis of local operators on such kind of states, and this under the most general boundary condition on the last site of the chain. As a result, we can compute the matrix elements of some of these basis elements in any eigenstate described by the homogenous TQ-equation. Assuming, following a conjecture of Nepomechie and Ravanini, that the ground state itself can be described in this framework, we obtain multiple integral representations for these matrix elements in the half-infinite chain limit, generalizing those previously obtained in the case of longitudinal boundary fields and in the case of the special boundary conditions considered in [1].