论文标题

关于智能计算卸载和定价策略的调查,在无人机启用MEC网络中:挑战和研究方向

A Survey on Intelligent Computation Offloading and Pricing Strategy in UAV-Enabled MEC Network: Challenges and Research Directions

论文作者

Baktayan, Asrar Ahmed, Al-Baltah, Ibrahim Ahmed

论文摘要

移动网络运营商(MNO)必须选择如何将移动设备(MD)查询委托到其移动边缘计算服务器(MEC)服务器,以最大程度地利用具有不同延迟需求的接收请求的总体好处。无人驾驶飞机(UAV)和人工智能(AI)可以提高MNO性能,因为它们在部署,无人机的高机动性和AI算法效率方面的灵活性。 MD产生的成本与MNO所获得的利润之间存在权衡。另一方面,智能计算卸载对支持无人机的MEC是弥合MDS有限处理资源之间差距的一种有希望的方法,以及用于计算UAV-MEC网络中计算卸载的智能算法以及即将到来的应用程序的高计算需求。这项研究着眼于关于UAV-MEC网络中计算卸载过程的好处的一些研究,以及用于计算卸载的智能模型。此外,本文研究了UAV-MEC网络中不同结构中的几种智能定价技术。最后,这项工作突出了一些重要的开放研究问题和未来的人工智能研究方向(AI)在计算卸载中,并在UAV-MEC网络中应用智能定价策略。

The Mobile Network Operator (MNO) must select how to delegate Mobile Device (MD) queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源