论文标题

理性$ q $ - 系统,希格斯林和镜子对称性

Rational $Q$-systems, Higgsing and Mirror Symmetry

论文作者

Gu, Jie, Jiang, Yunfeng, Sperling, Marcus

论文摘要

理性$ Q $ - 系统是一种有效的方法,可以解决bethe ansatz方程用于量子整合旋转链。我们为由$ a _ {\ ell-1} $ QUIVER描述的通用bethe ansatz方程构建了有理$ q $ - 系统,其中包括具有多个动量携带节点,通用不均匀性,通用对斜twist和$ q $ $ $ $ $ $ $ $ $ $ $ $的模型。这样构建的有理$ Q $系统由两个分区指定。在伯特/量规通讯下,有理$ q $ - 系统是一对一的信件,与3d $ \ nathcal {n} = 4 $ Quiver量规理论的类型$ {t} _ {\boldsymbolρ}^{\boldsymbolρ}^{\boldsymbolσ} [su(n)$,也是相同的分配。这表明有理$ q $ - 系统是伯特/量规通信的一种自然语言,因为$ {t} _ {\boldsymbolρ}^{\boldsymbolσ} [su(n)] $理论易于翻译。例如,我们表明,希格斯和库仑分支希格辛对应于修改有理$ q $系统中的一个分区之一,同时保持另一个分区。同样,通过简单地交换两个分区,就可以根据有理$ q $系统实现镜像对称性 - 与$ {t} _ {\boldsymbolρ}^{\boldsymbolσ} [su(n)$一样。我们通过评估3D $ \ Mathcal {n} = 4 $ $ u(n)$ n = 1,\ ldots,5 $ 5 $的3d $ \ Mathcal {n} = 4 $ \ u(n)$ sqcd Theories,来体现有理$ q $系统的计算效率。

The rational $Q$-system is an efficient method to solve Bethe ansatz equations for quantum integrable spin chains. We construct the rational $Q$-systems for generic Bethe ansatz equations described by an $A_{\ell-1}$ quiver, which include models with multiple momentum carrying nodes, generic inhomogeneities, generic diagonal twists and $q$-deformation. The rational $Q$-system thus constructed is specified by two partitions. Under Bethe/Gauge correspondence, the rational $Q$-system is in a one-to-one correspondence with a 3d $\mathcal{N}=4$ quiver gauge theory of the type ${T}_{\boldsymbolρ}^{\boldsymbolσ}[SU(n)]$, which is also specified by the same partitions. This shows that the rational $Q$-system is a natural language for the Bethe/Gauge correspondence, because known features of the ${T}_{\boldsymbolρ}^{\boldsymbolσ}[SU(n)]$ theories readily translate. For instance, we show that the Higgs and Coulomb branch Higgsing correspond to modifying one of the partitions in the rational $Q$-system while keeping the other untouched. Similarly, mirror symmetry is realized in terms of the rational $Q$-system by simply swapping the two partitions - exactly as for ${T}_{\boldsymbolρ}^{\boldsymbolσ}[SU(n)]$. We exemplify the computational efficiency of the rational $Q$-system by evaluating topologically twisted indices for 3d $\mathcal{N}=4$ $U(n)$ SQCD theories with $n=1,\ldots,5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源