论文标题

$ l^p $ -to- $ l^q $ comptators $ p> q $的紧凑型

The $L^p$-to-$L^q$ Compactness of Commutators with $p>q$

论文作者

Hytönen, Tuomas, Li, Kangwei, Tao, Jin, Yang, Dachun

论文摘要

令$ 1 <q <q <p <\ infty $,$ \ frac1r:= \ frac1q- \ frac1p $,而$ t $是一个非脱位calderón-zygmund操作员。我们表明,换向器$ [b,t] $从$ l^p({\ mathbb r}^n)$到$ l^q({\ mathbb r}^n)$ if,仅当符号$ b = a+c $带有$ b = with $ a a \ in l^r^r({\ mathbb r}^n)$ c $和任何常数。由于相应的硬木 - 最大运算符和相应的calderón-zygmund最大运算符并未从$ l^p({\ mathbb r}^n)$到$ l^q({\ mathbb r}^n)$限制,因此我们对$ c._ compact的全部优势c}^\ infty({\ Mathbb r}^n)$,对于许多相应的估计,当$ p \ leq q $中,但在$ p> q $时至关重要。我们还将结果扩展到多线性情况。

Let $1<q<p<\infty$, $\frac1r:=\frac1q-\frac1p$, and $T$ be a non-degenerate Calderón--Zygmund operator. We show that the commutator $[b,T]$ is compact from $L^p({\mathbb R}^n)$ to $L^q({\mathbb R}^n)$ if and only if the symbol $b=a+c$ with $a\in L^r({\mathbb R}^n)$ and $c$ being any constant. Since both the corresponding Hardy--Littlewood maximal operator and the corresponding Calderón--Zygmund maximal operator are not bounded from $L^p({\mathbb R}^n)$ to $L^q({\mathbb R}^n)$, we take the full advantage of the compact support of the approximation element in $C_{\rm c}^\infty({\mathbb R}^n)$, which seems to be redundant for many corresponding estimates when $p\leq q$ but to be crucial when $p>q$. We also extend the results to the multilinear case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源