论文标题
图灵模式中各向异性扩散的起源
Origin of anisotropic diffusion in Turing Patterns
论文作者
论文摘要
在本文中,我们在数值上研究了在热波动的三角形晶格上通过鳍的几何形状(FG)建模技术,这些晶格通常用于建模细胞膜或脂质膜,重点是扩散各向异性的起源。 FG建模处方使我们可以假设Laplacian描述的方向依赖性扩散。为了在FG建模中实施这种扩散各向异性,我们需要一个内部自由度(IDF),它取决于方向和位置,并由某些外部力量或刺激控制。对于这种方向依赖的IDF,我们使用与晶格顶点的热波动相对应的速度方向。我们发现,各向异性的图灵模式沿顶点波动的方向出现。在模拟中,不需要输入方向依赖性扩散系数,而IDF则沿外部刺激实现的方向对齐顶点波动的方向。我们的结果和技术提供了有关与图灵模式相关的扩散各向异性的起源的洞察力。
In this paper, we numerically study Turing patterns by the Finsler geometry (FG) modeling technique on thermally fluctuating triangular lattices, which are often used for modeling cell membranes or lipid membranes, focusing on the origin of diffusion anisotropy. The FG modeling prescription allows us to assume direction-dependent diffusion described by Laplacian. To implement such diffusion anisotropy in the FG modeling, we need an internal degree of freedom (IDF), which depends on direction and position and is controlled by some external forces or stimuli. For such a direction-dependent IDF, we use velocity directions corresponding to thermal fluctuations of the lattice vertices. We find that anisotropic Turing patterns emerge in the direction along which vertices fluctuate. In the simulations, direction-dependent diffusion coefficients are unnecessary for input, and instead, the IDF aligns the direction of vertex fluctuation along a direction implemented by external stimuli. Our results and techniques provide insight into the origin of diffusion anisotropy connected to Turing patterns.