论文标题

不稳定和当地的最小值在GAN培训中与内核歧视者

Instability and Local Minima in GAN Training with Kernel Discriminators

论文作者

Becker, Evan, Pandit, Parthe, Rangan, Sundeep, Fletcher, Alyson K.

论文摘要

生成对抗网络(GAN)是用于复杂数据生成建模的广泛使用的工具。尽管取得了经验成功,但由于发电机和歧视者的最低最大优化,对gan的训练尚未完全理解。本文分析了这些关节动力学时,当真实样品以及生成的样品是离散的,有限的集合,并且鉴别器基于内核。引入了一个简单而表达的框架,用于分析培训,称为$ \ textit {隔离点模型} $。在提出的模型中,真实样品之间的距离大大超过了内核宽度,因此每个生成的点最多都受到一个真实点的影响。我们的模型可以精确地表征好和不良最小值的收敛条件。特别是,该分析解释了两种常见的故障模式:(i)近似模式崩溃和(ii)分歧。提供了可预测复制这些行为的数值模拟。

Generative Adversarial Networks (GANs) are a widely-used tool for generative modeling of complex data. Despite their empirical success, the training of GANs is not fully understood due to the min-max optimization of the generator and discriminator. This paper analyzes these joint dynamics when the true samples, as well as the generated samples, are discrete, finite sets, and the discriminator is kernel-based. A simple yet expressive framework for analyzing training called the $\textit{Isolated Points Model}$ is introduced. In the proposed model, the distance between true samples greatly exceeds the kernel width, so each generated point is influenced by at most one true point. Our model enables precise characterization of the conditions for convergence, both to good and bad minima. In particular, the analysis explains two common failure modes: (i) an approximate mode collapse and (ii) divergence. Numerical simulations are provided that predictably replicate these behaviors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源