论文标题

一个半监督的教师研究框架,用于手术工具检测和本地化

A semi-supervised Teacher-Student framework for surgical tool detection and localization

论文作者

Ali, Mansoor, Ochoa-Ruiz, Gilberto, Ali, Sharib

论文摘要

微创手术中的手术工具检测是计算机辅助干预措施的重要组成部分。当前的方法主要是基于有监督的方法,这些方法需要大量的完全标记的数据来培训监督模型,并且由于阶级不平衡问题而患有伪标签偏见。但是,带有边界框注释的大图像数据集通常几乎无法使用。半监督学习(SSL)最近仅作为使用适度的注释数据训练大型模型的一种手段。除了降低注释成本。 SSL还显示出有望产生更强大和可推广的模型。因此,在本文中,我们在手术工具检测范式中引入了半监督学习(SSL)框架,该框架旨在通过知识蒸馏方法来减轻培训数据的稀缺和数据失衡。在拟议的工作中,我们培训了一个标有数据的模型,该模型启动了教师 - 学生的联合学习,在该学习中,学生接受了来自未标记数据的教师生成的伪标签的培训。我们提出了一个多级距离,在检测器的利益区域头部具有边缘的分类损失函数,以有效地将前景类别从背景区域隔离。我们在M2CAI16-Tool-locations数据集上的结果表明,我们的方法在不同的监督数据设置(1%,2%,5%,5%,注释数据的10%)上的优势,其中我们的模型在MAP中的总体改善达到了8%,12%和27%的地图(1%标记的数据)比全面的SSL SSL SSL基础和完全监督的基础和一项完全监督的基础。该代码可在https://github.com/mansooor-at/semi-supervise-surgical-tool-det上获得

Surgical tool detection in minimally invasive surgery is an essential part of computer-assisted interventions. Current approaches are mostly based on supervised methods which require large fully labeled data to train supervised models and suffer from pseudo label bias because of class imbalance issues. However large image datasets with bounding box annotations are often scarcely available. Semi-supervised learning (SSL) has recently emerged as a means for training large models using only a modest amount of annotated data; apart from reducing the annotation cost. SSL has also shown promise to produce models that are more robust and generalizable. Therefore, in this paper we introduce a semi-supervised learning (SSL) framework in surgical tool detection paradigm which aims to mitigate the scarcity of training data and the data imbalance through a knowledge distillation approach. In the proposed work, we train a model with labeled data which initialises the Teacher-Student joint learning, where the Student is trained on Teacher-generated pseudo labels from unlabeled data. We propose a multi-class distance with a margin based classification loss function in the region-of-interest head of the detector to effectively segregate foreground classes from background region. Our results on m2cai16-tool-locations dataset indicate the superiority of our approach on different supervised data settings (1%, 2%, 5%, 10% of annotated data) where our model achieves overall improvements of 8%, 12% and 27% in mAP (on 1% labeled data) over the state-of-the-art SSL methods and a fully supervised baseline, respectively. The code is available at https://github.com/Mansoor-at/Semi-supervised-surgical-tool-det

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源