论文标题

使用自称框架在Twitter中的可扩展链接预测

Scalable link prediction in Twitter using self-configured framework

论文作者

Daud, Nur Nasuha, Hamid, Siti Hafizah Ab, Seri, Chempaka, Saadoon, Muntadher, Anuar, Nor Badrul

论文摘要

链接预测分析对于对社交网络相互作用和联系的深入了解,尤其是在当前不断发展的大规模社交网络中,至关重要。在大多数大规模社交网络的可扩展性和效率方面,传统的链接预测方法的表现不佳。 Spark是一个分布式的开源框架,可促进大型社交网络中可扩展的链接预测效率。该框架为用户提供了许多可调属性,以手动配置应用程序的参数。但是,当应用程序开始大量缩放时,手动配置是针对性能问题开放的,这很难设置并暴露于人体错误。本文引入了一种新颖的自我配置框架(SCF),以提供Spark中的自主功能,该功能可以在使用XGBoost分类器执行之前立即预测并设置最佳配置。使用三个链接预测应用程序在Twitter社交网络上评估SCF:图形群集(GC),重叠的社区检测(OCD)和冗余图集群集(RGD),以评估转移数据大小对Twitter中不同应用的影响。结果表明,预测时间降低了40%,以及充分利用资源的平衡资源消耗,尤其是对于有限的群集数量和大小

Link prediction analysis becomes vital to acquire a deeper understanding of events underlying social networks interactions and connections especially in current evolving and large-scale social networks. Traditional link prediction approaches underperformed for most large-scale social networks in terms of its scalability and efficiency. Spark is a distributed open-source framework that facilitate scalable link prediction efficiency in large-scale social networks. The framework provides numerous tunable properties for users to manually configure the parameters for the applications. However, manual configurations open to performance issue when the applications start scaling tremendously, which is hard to set up and expose to human errors. This paper introduced a novel Self-Configured Framework (SCF) to provide an autonomous feature in Spark that predicts and sets the best configuration instantly before the application execution using XGBoost classifier. SCF is evaluated on the Twitter social network using three link prediction applications: Graph Clustering (GC), Overlapping Community Detection (OCD), and Redundant Graph Clustering (RGD) to assess the impact of shifting data sizes on different applications in Twitter. The result demonstrates a 40% reduction in prediction time as well as a balanced resource consumption that makes full use of resources, especially for limited number and size of clusters

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源