论文标题

部分可观测时空混沌系统的无模型预测

FLIS: Clustered Federated Learning via Inference Similarity for Non-IID Data Distribution

论文作者

Morafah, Mahdi, Vahidian, Saeed, Wang, Weijia, Lin, Bill

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Classical federated learning approaches yield significant performance degradation in the presence of Non-IID data distributions of participants. When the distribution of each local dataset is highly different from the global one, the local objective of each client will be inconsistent with the global optima which incur a drift in the local updates. This phenomenon highly impacts the performance of clients. This is while the primary incentive for clients to participate in federated learning is to obtain better personalized models. To address the above-mentioned issue, we present a new algorithm, FLIS, which groups the clients population in clusters with jointly trainable data distributions by leveraging the inference similarity of clients' models. This framework captures settings where different groups of users have their own objectives (learning tasks) but by aggregating their data with others in the same cluster (same learning task) to perform more efficient and personalized federated learning. We present experimental results to demonstrate the benefits of FLIS over the state-of-the-art benchmarks on CIFAR-100/10, SVHN, and FMNIST datasets. Our code is available at https://github.com/MMorafah/FLIS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源