论文标题

$ sl_2 $ qkz方程的解决方案modulo an Integer

Solutions of the $sl_2$ qKZ equations modulo an integer

论文作者

Mukhin, Evgeny, Varchenko, Alexander

论文摘要

我们研究了QKZ差异方程式,其值在$ n $ -th张量的功率中$ sl_2 $表示$ v $,变量$ z_1,\ dots,z_n $和Integer步骤$κ$。对于任何与步骤$κ$相对高的整数$ n $,我们在变量中构建了一个多项式$ f_r(z)$ $ z_1,\ dots,z_n $,值$ v^{\ otimimes n} $中的值与这些coortination coortination coortination coortinate $ v^^$ v^”系数。我们表明,多项式$ f_r(z)$满足qkz方程模型$ n $。 多项式$ f_r(z)$是以多维Barnes积分形式给出的\ qkz/方程的超几何解决方案的类似物。

We study the qKZ difference equations with values in the $n$-th tensor power of the vector $sl_2$ representation $V$, variables $z_1,\dots,z_n$ and integer step $κ$. For any integer $N$ relatively prime to the step $κ$, we construct a family of polynomials $f_r(z)$ in variables $z_1,\dots,z_n$ with values in $V^{\otimes n}$ such that the coordinates of these polynomials with respect to the standard basis of $V^{\otimes n}$ are polynomials with integer coefficients. We show that the polynomials $f_r(z)$ satisfy the qKZ equations modulo $N$. Polynomials $f_r(z)$ are modulo $N$ analogs of the hypergeometric solutions of the \qKZ/ equations given in the form of multidimensional Barnes integrals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源