论文标题

审查智能城市运输系统中事故检测的行动识别

Review on Action Recognition for Accident Detection in Smart City Transportation Systems

论文作者

Adewopo, Victor, Elsayed, Nelly, ElSayed, Zag, Ozer, Murat, Abdelgawad, Ahmed, Bayoumi, Magdy

论文摘要

行动检测和公共交通安全是安全社区和更好社会的关键方面。使用不同的监视摄像机监视智能城市中的交通流量可以在识别事故和提醒急救人员的情况下发挥重要作用。计算机视觉任务中的动作识别(AR)的利用为视频监视,医学成像和数字信号处理中的高精度应用做出了贡献。本文提出了一项密集的审查,重点是智能城市事故检测和自动运输系统中的行动识别。在本文中,我们专注于使用各种交通视频捕获来源的AR系统,例如交通交叉点上的静态监视摄像机,高速公路监控摄像头,无人机摄像头和仪表板。通过这篇综述,我们确定了AR中用于自动运输和事故检测的主要技术,分类法和算法。我们还检查了在AR任务中使用的数据集,并识别数据集的数据集和功能的主要来源。本文通过警告应急人员和执法部门,在道路事故发生事故中,在事故报告中最大程度地减少人为错误并对受害者提供了自发反应,从而为自动驾驶汽车和公共交通安全系统提供了潜在的研究方向,以开发和整合为自动驾驶汽车和公共交通安全系统的事故检测系统。

Action detection and public traffic safety are crucial aspects of a safe community and a better society. Monitoring traffic flows in a smart city using different surveillance cameras can play a significant role in recognizing accidents and alerting first responders. The utilization of action recognition (AR) in computer vision tasks has contributed towards high-precision applications in video surveillance, medical imaging, and digital signal processing. This paper presents an intensive review focusing on action recognition in accident detection and autonomous transportation systems for a smart city. In this paper, we focused on AR systems that used diverse sources of traffic video capturing, such as static surveillance cameras on traffic intersections, highway monitoring cameras, drone cameras, and dash-cams. Through this review, we identified the primary techniques, taxonomies, and algorithms used in AR for autonomous transportation and accident detection. We also examined data sets utilized in the AR tasks, identifying the main sources of datasets and features of the datasets. This paper provides potential research direction to develop and integrate accident detection systems for autonomous cars and public traffic safety systems by alerting emergency personnel and law enforcement in the event of road accidents to minimize human error in accident reporting and provide a spontaneous response to victims

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源