论文标题

SDSS J2211+1136和ZTF J1901+1458的双白矮人合并祖细胞

The double white dwarf merger progenitors of SDSS J2211+1136 and ZTF J1901+1458

论文作者

Sousa, M. F., Coelho, J. G., de Araujo, J. C. N., Kepler, S. O., Rueda, J. A.

论文摘要

双白矮人(DWD)合并可能是大型,迅速旋转的高场磁白矮人(HFMWDS)的领先地层通道。但是,将DWD合并连接到任何观察到的HFMWD的直接链接仍然缺失。我们在这里显示HFMWDS SDSS J221141.80+113604.4(以下简称J2211+1136)和ZTF J190132.9+145808.7(以下简称J1901+1458),可能是DWD合并产品。 J2211+1136是$ 1.27 \,m_ \ odot $ wd,旋转期为$ 70.32 $ s,表面磁场为$ 15 $ mg。 J1901+1458是$ 1.327 $ - $ 1.365 \,m_ \ odot $ wd,旋转期为$ 416.20 $ s,而表面磁场则为$ 600 $ - $ 900 $ mg。通过假设单星演变,当前测量的WD质量和表面温度,J2211+1136和J1901+1458的冷却年龄分别为$ 2.61 $ - $ 2.85 $ - $ 2.85 $ GYR和$ 10 $ - $ -100 $ 100美元。我们假设这些WD是DWD合并产品,并计算由磁盘包围的中央WD形成的后结合配置的演变。我们表明,合并后系统通过三个阶段演变,具体取决于积聚,质量射出(螺旋桨)或磁制动,将扭矩占主导地位到中央WD上。我们计算WD在每个阶段的时间,并获得脂肪率和磁盘质量,即WD旋转年龄,即自合并到WD中心剩余的合并以来所经过的总时间,与估计的WD冷却年龄达成一致。我们推断DWD合并的主要和次要WD成分的质量值导致与观测值一致的合并后进化。

Double white dwarf (DWD) mergers are possibly the leading formation channel of massive, rapidly rotating, high-field magnetic white dwarfs (HFMWDs). However, the direct link connecting a DWD merger to any observed HFMWD is still missing. We here show that the HFMWDs SDSS J221141.80+113604.4 (hereafter J2211+1136) and ZTF J190132.9+145808.7 (hereafter J1901+1458), might be DWD merger products. J2211+1136 is a $1.27\, M_\odot$ WD with a rotation period of $70.32$ s and a surface magnetic field of $15$ MG. J1901+1458 is a $1.327$--$1.365\, M_\odot$ WD with a rotation period of $416.20$ s, and a surface magnetic field in the range $600$--$900$ MG. With the assumption of single-star evolution, the currently measured WD masses and surface temperatures, the cooling ages of J2211+1136 and J1901+1458 are, respectively, $2.61$--$2.85$ Gyr and $10$--$100$ Myr. We hypothesize that these WDs are DWD merger products and compute the evolution of the post-merged configuration formed by a central WD surrounded by a disk. We show that the post-merger system evolves through three phases depending on whether accretion, mass ejection (propeller), or magnetic braking dominates the torque onto the central WD. We calculate the time the WD spends in each of these phases and obtain the accretion rate and disk mass for which the WD rotational age, i.e., the total time elapsed since the merger to the instant where the WD central remnant reaches the current measured rotation period, agrees with the estimated WD cooling age. We infer the mass values of the primary and secondary WD components of the DWD merger that lead to a post-merger evolution consistent with the observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源