论文标题

椭圆形曲线的等级增长$ s_4 $和$ a_4 $ $ $ QUARTIC的理性扩展

Rank growth of elliptic curves in $S_4$ and $A_4$ quartic extensions of the rationals

论文作者

Keliher, Daniel

论文摘要

我们研究了椭圆曲线从$ \ mathbb {q} $到$ s_4 $和$ a_4 $ QUARTIC EXTENTIONS $ K/\ MATHBB {Q} $的等级增长。特别是,我们对固定的$ e $和变化$ k $的数量$ \ mathrm {rk}(e/k) - \ mathrm {rk}(e/\ mathbb {q})$感兴趣。当$ \ mathrm {rk}(e/\ mathbb {q})\ leq 1 $,$ e $均处于其他条件下,我们证明,有很多$ s_4 $ s_4 $ QUARTENIONS $ K/\ MATHBB {Q} $在$上不提高等级,即$ \ Math.k) \ mathrm {rk}(e/\ mathbb {q})= 0 $。为此,我们展示了如何在某些二次扩展中控制$ e $的2-核等级,这反过来又有助于控制$ s_4 $和$ a_4 $ a_4 $四分位扩展名的$ \ mathbb {q} $的等级。

We investigate the rank growth of elliptic curves from $\mathbb{Q}$ to $S_4$ and $A_4$ quartic extensions $K/\mathbb{Q}$. In particular, we are interested in the quantity $\mathrm{rk}(E/K) - \mathrm{rk}(E/\mathbb{Q})$ for fixed $E$ and varying $K$. When $\mathrm{rk}(E/\mathbb{Q}) \leq 1$, with $E$ subject to some other conditions, we prove there are infinitely many $S_4$ quartic extensions $K/\mathbb{Q}$ over which $E$ does not gain rank, i.e. such that $\mathrm{rk}(E/K) - \mathrm{rk}(E/\mathbb{Q}) = 0$. To do so, we show how to control the 2-Selmer rank of $E$ in certain quadratic extensions, which in turn contributes to controlling the rank in families of $S_4$ and $A_4$ quartic extensions of $\mathbb{Q}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源