论文标题
仔细选择基线:从应用XAI归因方法中学习的经验教训
Carefully choose the baseline: Lessons learned from applying XAI attribution methods for regression tasks in geoscience
论文作者
论文摘要
可解释的人工智能方法(XAI)用于地球科学应用中,以洞悉神经网络(NNS)的决策策略(NNS),该策略强调了输入中哪些功能对NN预测有最大的作用。在这里,我们讨论了我们的教训,了解到将预测归因于输入的任务没有一个解决方案。取而代之的是,归因结果及其解释在很大程度上取决于XAI方法使用的考虑的基线(有时称为参考点)。到目前为止,这一事实在文献中被忽略了。该基线可以由用户选择,也可以是通过方法S算法中的构造设置的,通常没有用户意识到该选择。我们强调,不同的基线可以引起有关不同科学问题的不同见解,因此应相应地选择。为了说明基线的影响,我们使用SSP3-7.0场景强迫的历史和未来气候模拟的大量合奏,并训练完全连接的NN,以预测来自单个Ensemble成员的年度温度图,预测一体和全球 - 和全球 - 和全球 - 和全球的温度(即强迫全球变暖信号)。然后,我们使用各种XAI方法和不同的基线将网络预测归因于输入。我们表明,在考虑不同的基准时,归因与回答不同的科学问题相对应。我们通过讨论有关基准在XAI研究中使用的一些重要含义和考虑的结论。
Methods of eXplainable Artificial Intelligence (XAI) are used in geoscientific applications to gain insights into the decision-making strategy of Neural Networks (NNs) highlighting which features in the input contribute the most to a NN prediction. Here, we discuss our lesson learned that the task of attributing a prediction to the input does not have a single solution. Instead, the attribution results and their interpretation depend greatly on the considered baseline (sometimes referred to as reference point) that the XAI method utilizes; a fact that has been overlooked so far in the literature. This baseline can be chosen by the user or it is set by construction in the method s algorithm, often without the user being aware of that choice. We highlight that different baselines can lead to different insights for different science questions and, thus, should be chosen accordingly. To illustrate the impact of the baseline, we use a large ensemble of historical and future climate simulations forced with the SSP3-7.0 scenario and train a fully connected NN to predict the ensemble- and global-mean temperature (i.e., the forced global warming signal) given an annual temperature map from an individual ensemble member. We then use various XAI methods and different baselines to attribute the network predictions to the input. We show that attributions differ substantially when considering different baselines, as they correspond to answering different science questions. We conclude by discussing some important implications and considerations about the use of baselines in XAI research.