论文标题
随机线性系统的稀疏结构设计通过线性矩阵不等式方法
Sparse Structure Design for Stochastic Linear Systems via a Linear Matrix Inequality Approach
论文作者
论文摘要
在本文中,我们为具有乘法噪声的随机线性系统提出了一种促进性反馈控制设计。目的是确定一个稀疏的控制体系结构,该体系结构可以优化闭环性能,同时在均值意义上稳定系统。提出的方法通过最小化受线性矩阵不等式(LMI)稳定性条件的各种矩阵规范来近似非凸组合优化问题。我们提出两个设计问题,以减少通过静态反馈和低维输出减少执行器的数量。提出了具有乘法噪声(LQRM)的最佳控制问题及其凸松弛的正则线性二次调节器,以证明次优闭环性能与控制结构的稀疏度之间的权衡。广泛频率控制的功率网格的案例研究表明,提出的促稀疏控制可以大大减少执行器的数量,而不会在系统性能上大幅损失。稀疏的控制体系结构对实质性的系统级干扰具有鲁棒性,同时实现了均方稳定性。
In this paper, we propose a sparsity-promoting feedback control design for stochastic linear systems with multiplicative noise. The objective is to identify a sparse control architecture that optimizes the closed-loop performance while stabilizing the system in the mean-square sense. The proposed approach approximates the nonconvex combinatorial optimization problem by minimizing various matrix norms subject to the Linear Matrix Inequality (LMI) stability condition. We present two design problems to reduce the number of actuators via the static state-feedback and a low-dimensional output. A regularized linear quadratic regulator with multiplicative noise (LQRm) optimal control problem and its convex relaxation are presented to demonstrate the tradeoff between the suboptimal closed-loop performance and the sparsity degree of control structure. Case studies on power grids for wide-area frequency control show that the proposed sparsity-promoting control can considerably reduce the number of actuators without significant loss in system performance. The sparse control architecture is robust to substantial system-level disturbances while achieving mean-square stability.