论文标题

朝着高效的胶囊网络

Towards Efficient Capsule Networks

论文作者

Renzulli, Riccardo, Grangetto, Marco

论文摘要

从神经网络统治图像处理的那一刻,解决目标任务所需的计算复杂性飙升:在这种不可持续的趋势下,已经制定了许多策略,雄心勃勃地针对绩效的保存。例如,促进稀疏拓扑允许在嵌入式,资源约束的设备上部署深神网络模型。最近,引入了胶囊网络以增强模型的解释性,其中每个胶囊都是对象或其零件的明确表示。这些模型在玩具数据集上显示出令人鼓舞的结果,但是它们的低可扩展性阻止了在更复杂的任务上的部署。在这项工作中,我们通过减少胶囊数量来探索稀疏性以提高其计算效率。我们展示了胶囊网络的修剪如何通过更少的内存需求,计算工作以及推理和训练时间来实现高概括。

From the moment Neural Networks dominated the scene for image processing, the computational complexity needed to solve the targeted tasks skyrocketed: against such an unsustainable trend, many strategies have been developed, ambitiously targeting performance's preservation. Promoting sparse topologies, for example, allows the deployment of deep neural networks models on embedded, resource-constrained devices. Recently, Capsule Networks were introduced to enhance explainability of a model, where each capsule is an explicit representation of an object or its parts. These models show promising results on toy datasets, but their low scalability prevents deployment on more complex tasks. In this work, we explore sparsity besides capsule representations to improve their computational efficiency by reducing the number of capsules. We show how pruning with Capsule Network achieves high generalization with less memory requirements, computational effort, and inference and training time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源