论文标题

通过频率调查生成模型的分布式检测

Out-of-distribution Detection via Frequency-regularized Generative Models

论文作者

Cai, Mu, Li, Yixuan

论文摘要

现代深层生成模型可以为从训练分布外部提取的输入分配很高的可能性,从而对开放世界部署的模型构成威胁。尽管已经对定义新的OOD不确定性测试时间度量的研究进行了很多关注,但这些方法并没有从根本上改变生成模型在训练中的正则和优化。特别是,生成模型被证明过于依赖背景信息来估计可能性。为了解决这个问题,我们提出了一个新型的OOD检测的新型频率调查学习FRL框架,该框架将高频信息纳入培训中,并指导模型专注于语义相关的功能。 FRL有效地提高了广泛的生成体系结构的性能,包括变异自动编码器,Glow和PixelCNN ++。在一项新的大规模评估任务中,FRL实现了最先进的表现,优于强大的基线可能性遗憾的是10.7%(AUROC),同时实现了147美元的$ \ times $ $ $ \ times $ $。广泛的消融表明,FRL在保留图像生成质量的同时提高了OOD检测性能。代码可在https://github.com/mu-cai/frl上找到。

Modern deep generative models can assign high likelihood to inputs drawn from outside the training distribution, posing threats to models in open-world deployments. While much research attention has been placed on defining new test-time measures of OOD uncertainty, these methods do not fundamentally change how deep generative models are regularized and optimized in training. In particular, generative models are shown to overly rely on the background information to estimate the likelihood. To address the issue, we propose a novel frequency-regularized learning FRL framework for OOD detection, which incorporates high-frequency information into training and guides the model to focus on semantically relevant features. FRL effectively improves performance on a wide range of generative architectures, including variational auto-encoder, GLOW, and PixelCNN++. On a new large-scale evaluation task, FRL achieves the state-of-the-art performance, outperforming a strong baseline Likelihood Regret by 10.7% (AUROC) while achieving 147$\times$ faster inference speed. Extensive ablations show that FRL improves the OOD detection performance while preserving the image generation quality. Code is available at https://github.com/mu-cai/FRL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源